canonical variate - significado y definición. Qué es canonical variate
DICLIB.COM
Herramientas lingüísticas IA
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es canonical variate - definición

WAY OF INFERRING INFORMATION FROM CROSS-COVARIANCE MATRICES
Canonical correlation analysis; Canonical Correlation Analysis; Canonical variates analysis; Canonical variate analysis

Canonical correlation         
In statistics, canonical-correlation analysis (CCA), also called canonical variates analysis, is a way of inferring information from cross-covariance matrices. If we have two vectors X = (X1, ...
Random variate         
PARTICULAR OUTCOME OF A RANDOM VARIABLE
Random deviate; Deviate (statistics); Variate
In probability and statistics, a random variate or simply variate is a particular outcome of a random variable: the random variates which are other outcomes of the same random variable might have different values (random numbers).
Variate         
PARTICULAR OUTCOME OF A RANDOM VARIABLE
Random deviate; Deviate (statistics); Variate
·vt & ·vi To Alter; to make different; to Vary.

Wikipedia

Canonical correlation

In statistics, canonical-correlation analysis (CCA), also called canonical variates analysis, is a way of inferring information from cross-covariance matrices. If we have two vectors X = (X1, ..., Xn) and Y = (Y1, ..., Ym) of random variables, and there are correlations among the variables, then canonical-correlation analysis will find linear combinations of X and Y which have maximum correlation with each other. T. R. Knapp notes that "virtually all of the commonly encountered parametric tests of significance can be treated as special cases of canonical-correlation analysis, which is the general procedure for investigating the relationships between two sets of variables." The method was first introduced by Harold Hotelling in 1936, although in the context of angles between flats the mathematical concept was published by Jordan in 1875.